










instrument transcription system based on probabilistic la-

tent component analysis, and performed a conservative tran-

scription pre-processing step in order to detect notes with

a high confidence. Based on the initial transcription, the

spectra of the detected notes are collected, processed, and

are used in order to create a new dictionary that closely

matches the spectral characteristics of the input instrument

source(s). Both single-instrument and multi-instrument vari-

ants of the proposed method are presented and evaluated,

in terms of multi-pitch detection and instrument assign-

ment. Experimental results using the MAPS and Bach10

datasets show that there is a clear and consistent perfor-

mance improvement when using the proposed template adap-

tation method, especially when there is a large discrepancy

between the original dictionary and the spectral character-

istics of the test instrument sources.

In the future, we will evaluate the proposed system us-

ing multiple-instrument recordings with more than two in-

struments. Parametric models (such as source-filter mod-

els) will also be investigated for updating the note tem-

plates, along with adaptive methods for deriving the con-

servative transcription threshold. We also plan to evaluate

the proposed system in the next MIREX evaluations [1].

Finally, the proposed template adaptation steps will also

be evaluated in the context of score-informed source sepa-

ration using spectrogram factorization models [9].
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