
PANAKO - A SCALABLE ACOUSTIC FINGERPRINTING SYSTEM
HANDLING TIME-SCALE AND PITCH MODIFICATION

Six Joren, Marc Leman
Institute for Psychoacoustics and Electronic Music (IPEM),

Department of Musicology, Ghent University
Ghent, Belgium

joren.six@ugent.be

ABSTRACT

This paper presents a scalable granular acoustic fingerprint-
ing system. An acoustic fingerprinting system uses con-
densed representation of audio signals, acoustic fingerprints,
to identify short audio fragments in large audio databases.
A robust fingerprinting system generates similar fingerprints
for perceptually similar audio signals. The system pre-
sented here is designed to handle time-scale and pitch mod-
ifications. The open source implementation of the sys-
tem is called Panako and is evaluated on commodity hard-
ware using a freely available reference database with fin-
gerprints of over 30,000 songs. The results show that the
system responds quickly and reliably on queries, while han-
dling time-scale and pitch modifications of up to ten per-
cent.

The system is also shown to handle GSM-compression,
several audio effects and band-pass filtering. After a query,
the system returns the start time in the reference audio
and how much the query has been pitch-shifted or time-
stretched with respect to the reference audio. The design
of the system that offers this combination of features is the
main contribution of this paper.

1. INTRODUCTION

The ability to identify a small piece of audio by comparing
it with a large reference audio database has many practical
use cases. This is generally known as audio fingerprinting
or acoustic fingerprinting. An acousic fingerprint is a con-
densed representation of an audio signal that can be used
to reliably identify identical, or recognize similar, audio
signals in a large set of reference audio. The general pro-
cess of an acoustic fingerprinting system is depicted in Fig-
ure 1. Ideally, a fingerprinting system only needs a short
audio fragment to find a match in large set of reference
audio. One of the challenges is to design a system in a
way that the reference database can grow to contain mil-
lions of entries. Another challenge is that a robust finger-

c© Six Joren, Marc Leman.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Six Joren, Marc Leman. “Panako - A
Scalable Acoustic Fingerprinting System Handling Time-Scale and Pitch
Modification”, 15th International Society for Music Information Retrieval
Conference, 2014.

printing should handle noise and other modifications well,
while limiting the amount of false positives and processing
time [5]. These modifications typically include dynamic
range compression, equalization, added background noise
and artifacts introduced by audio coders or A/D-D/A con-
versions.

Over the years several efficient acoustic fingerprinting
methods have been introduced [1, 6, 8, 13]. These meth-
ods perform well, even with degraded audio quality and
with industrial sized reference databases. However, these
systems are not designed to handle queries with modified
time-scale or pitch although these distortions can be present
in replayed material. Changes in replay speed can occur ei-
ther by accident during an analog to digital conversion or
they are introduced deliberately.

Accidental replay speed changes can occur when work-
ing with physical, analogue media. Large music archive
often consist of wax cylinders, magnetic tapes and gramo-
phone records. These media are sometimes digitized using
an incorrect or varying playback speed. Even when cali-
brated mechanical devices are used in a digitization pro-
cess, the media could already have been recorded at an un-
desirable or undocumented speed. A fingerprinting system
should therefore allow changes in replay speed to correctly
detect duplicates in such music archives.

Deliberate time-scale manipulations are sometimes in-
troduced as well. During radio broadcasts, for example,
songs are occasionally played a bit faster to make them fit
into a time slot. During a DJ-set pitch-shifting and time-
stretching are present almost continuously. To correctly
identify audio in these cases as well, a fingerprinting sys-
tem robust against pitch-shifting and time-stretching is de-
sired.

Some fingerprinting systems have been developed that
take pitch-shifts into account [3, 7, 11] without allowing
time-scale modification. Others are designed to handle
both pitch and time-scale modification [10, 14]. The sys-
tem by Zhu et al [14] employs an image processing algo-
rithm on an auditory image to counter time-scale modifica-
tion and pitch-shifts. Unfortunately, the system is compu-
tationally expensive, it iterates the whole database to find a
match. The system by Malekesmaeili et al [10] allows ex-
treme pitch- shifting and time-stretching, but has the same
problem. To the best of our knowledge, a description of
a practical acoustic fingerprinting system that allows sub-

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

1

Feature
Extraction

Audio Fingerprint
Construction

Matching

Other
Fingerprints

Features Fingerprint Identified Audio

Figure 1: A generalized audio fingerprinter scheme. Audio is fed into the system, features are extracted and fingerprints constructed.
The fingerprints are consecutively compared with a database containing the fingerprints of the reference audio. The original audio is
either identified or, if no match is found, labeled as unknown.

stantial pitch-shift and time-scale modification is nowhere
to be found in the literature. This description is the main
contribution of this paper.

2. METHOD

The proposed method is inspired by three works. Combin-
ing key components of those works results in a design of
a granular acoustic fingerprinter that is robust to noise and
substantial compression, has a scalable method for finger-
print storage and matching, and allows time-scale modifi-
cation and pitch-shifting.

Firstly, the method used by Wang [13] establishes that
local maxima in a time-frequency representation can be
used to construct fingerprints that are robust to quantiza-
tion effects, filtering, noise and substantial compression.
The described exact-hashing method for storing and match-
ing fingerprints has proven to be very scalable. Secondly,
Artz et al. [2] describe a method to align performances and
scores. Especially interesting is the way how triplets of
events are used to search for performances with different
timings. Thirdly, The method by Fenet et al. [7] introduces
the idea to extract fingerprints from a Constant-Q [4] trans-
form, a time-frequency representation that has a constant
amount of bins for every octave. In their system a a fin-
gerprint remains constant when a pitch-shift occurs. How-
ever, since time is encoded directly within the fingerprint,
the method does not allow time-scale modification.

Considering previous works, the method presented here
uses local maxima in a spectral representation. It combines
three event points, and takes time ratios to form time-scale
invariant fingerprints. It leverages the Constant-Q trans-
form, and only stores frequency differences for pitch-shift
invariance. The fingerprints are designed with an exact
hashing matching algorithm in mind. Below each aspect
is detailed.

2.1 Finding Local Maxima

Suppose a time-frequency representation of a signal is pro-
vided. To locate the points where energy reaches a local
maximum, a tiled two-dimensional peak picking algorithm
is applied. First the local maxima for each spectral analy-
sis frame are identified. Next each of the local maxima are
iterated and put in the center of a tile with ∆T × ∆F as
dimensions. If the local maximum is also the maximum
within the tile it is kept, otherwise it is discarded. Thus,

80 100 120 140 160 180
100

120

140

160

180

200

∆t1 ∆t2

∆t′1 ∆t′2

Time (step)

Fr
eq

ue
nc

y
(b

in
)

Reference Pitch-shifted
Time-stretched Time-scale mod

Figure 2: The effect of time-scale and pitch modifications on a
fingerprint. It shows a single fingerprint extracted from reference
audio () and the same fingerprint extracted from audio after
pitch-shifting (), time-stretching () and time-scale mod-
ification ().

making sure only one point is identified for every tile of
∆T ×∆F . This approach is similar to [7,13]. This results
in a list of event points each with a frequency component
f , expressed in bins, and a time component t, expressed
in time steps. ∆T and ∆F are chosen so that there are
between 24 and 60 event points every second.

A spectral representation of an audio signal has a certain
granularity; it is essentially a grid with bins both in time as
in frequency. When an audio signal is modified, the energy
that was originally located in one single bin can be smeared
over two or more bins. This poses a problem, since the goal
is to be able to locate event points with maximum energy
reliably. To improve reliability, a post processing step is
done to refine the location of each event point by taking
its energy and mixing it with the energy of the surrounding
bins. The same thing is done for the surrounding bins. If
a new maximum is found in the surroundings of the initial
event point, the event point is relocated accordingly. Ef-
fectively, a rectangular blur with a 3 × 3 kernel is applied
at each event point and its surrounding bins.

Once the event points with local maximum energy are
identified, the next step is to combine them to form a fin-
gerprint. A fingerprint consists of three event points, as
seen in Figure 2. To construct a fingerprint, each event
point is combined with two nearby event points. Each
event point can be part of multiple fingerprints. Only be-

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

2

tween 8 and 20 fingerprints are kept every second. Finger-
prints with event points with the least cumulative energy
are discarded. Now that a list of fingerprints has been cre-
ated a method to encode time information in a fingerprint
hash is needed.

2.2 Handling Time Stretching: Event Triplets

Figure 2 shows the effect of time stretching on points in
the time-frequency domain. There, a fingerprint extracted
from reference audio (Fig.2,) is compared with a fin-
gerprint from time stretched audio (Fig.2,). Both fin-
gerprints are constructed using three local maxima e1, e2, e3
and e′1, e

′
2, e
′
3 . While the frequency components stay the

same, the time components do change. However, the ra-
tios between the time differences are constant as well. The
following equation holds 1 :

t2 − t1
t3 − t1

=
t′2 − t′1
t′3 − t′1

(1)

With event point en having a time and frequency com-
ponent (tn, fn) and the corresponding event points e′n hav-
ing the components (t′n, f

′
n). Since t3 − t1 ≥ t2 − t1, the

ratio always resolves to a number in the range]0, 1]. This
number, scaled and rounded, is a component of the even-
tual fingerprint hash (an approach similar to [2]).

Now that a way to encode time information, indiffer-
ent of time-stretching, has been found, a method to encode
frequency, indifferent to pitch-shifting is desired.

2.3 Handling Pitch-Shifts: Constant-Q Transform

Figure 2 shows a comparison between a fingerprint from
pitch shifted audio () with a fingerprint from reference
audio (). In the time-frequency domain pitch shift-
ing is a vertical translation and time information is pre-
served. Since every octave has the same number of bins [4]
a pitch shift on event e1 will have the following effect on
it’s frequency component f1, with K being a constant,
f ′1 = f1 + K. It is clear that the difference between the
frequency components remains the same, before and af-
ter pitch shifting: f1 − f2 = (f ′1 + K) − (f ′2 + K) [7].
In the proposed system three event points are available,
the following information is stored in the fingerprint hash:
f1 − f2; f2 − f3; f̃1; f̃3

The last two elements, f̃1 and f̃3 are sufficiently coarse
locations of the first and third frequency component. They
are determined by the index of the frequency band they
fall into after dividing the spectrum into eight bands. They
provide the hash with more discriminative power but also
limit how much the audio can be pitch-shifted, while main-
taining the same fingerprint hash.

2.4 Handling Time-Scale Modification

Figure 2 compares a fingerprint of reference audio (Fig.2,
) with a fingerprint from the same audio that has been

sped up (Fig.2,). The figure makes clear that speed

1 It is assumed that the time stretch factor is constant in the time inter-
val t′3 − t′1. A reasonable assumption since t′3 − t′1 is small.

change is a combination of both time-stretching and pitch-
shifting. Since both are handled in with the previous mea-
sures, no extra precautions need to be taken. The next step
is to combine the properties into a fingerprint that is effi-
cient to store and match.

2.5 Fingerprint Hash

A fingerprint with a corresponding hash needs to be con-
structed carefully to maintain aforementioned properties.
The result of a query should report the amount of pitch-
shift and time-stretching that occurred. To that end, the
absolute value of f1 and t3 − t1 is stored, they can be used
to compare with f ′1 and t′3 − t′1 from the query. The time
offset at which a match was found should be returned as
well, so t1 needs to be stored. The complete information
to store for each fingerprint is:

(
f1 − f2; f2 − f3; f̃1; f̃3;

t2 − t1
t3 − t1

)
; t1; f1; t3 − t1; id

(2)
The hash, the first element between brackets, can be

packed into a 32bit integer. To save space, f1 and t3 − t1
can be combined in one 32bit integer. An integer of 32bit
is also used to store t1. The reference audio identifier is
also a 32bit identifier. A complete fingerprint consists of
4×32bit = 128bit. At eight fingerprints per second a song
of four minutes is reduced to 128bit×8×60×4 = 30kB.
An industrial size data set of one million songs translates
to a manageable 28GB 2 .

2.6 Matching Algorithm

The matching algorithm is inspired by [13], but is heavily
modified to allow time stretched and pitch-shifted matches.
It follows the scheme in Figure 1 and has seven steps.

1. Local maxima are extracted from a constant-Q spectro-
gram from the query. The local maxima are combined
by three to form fingerprints, as explained in Sections
2.1, 2.3 and 2.4.

2. For each fingerprint a corresponding hash value is cal-
culated, as explained in Section 2.5.

3. The set of hashes is matched with the hashes stored
in the reference database, and each exact match is re-
turned.

4. The matches are iterated while counting how many times
each individual audio identifier occurs in the result set.

5. Matches with an audio identifier count lower than a cer-
tain threshold are removed, effectively dismissing ran-
dom chance hits. In practice there is almost always only
one item with a lot of matches, the rest being random
chance hits. A threshold of three or four suffices.

2 Depending on the storage engine used, storage of fingerprints to-
gether with an index of sorts introduces a storage overhead. Since the
data to store is small, the index can be relatively large.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

3

6. The residual matches are checked for alignment, both
in frequency and time, with the reference fingerprints
using the information that is stored along with the hash.

7. A list of audio identifiers is returned ordered by the
amount of fingerprints that align both in pitch and fre-
quency.

In step six, frequency alignment is checked by com-
paring the f1 component of the stored reference with f ′1,
the frequency component of the query. If, for each match,
the difference between f1 and f ′1 is constant, the matches
align.

Alignment in time is checked using the reference time
information t1 and t3 − t1, and the time information of the
corresponding fingerprint extracted from the query frag-
ment t′1, t′3 − t′1. For each matching fingerprint the time
offset to is calculated. The time offset to resolves to the
amount of time steps between the beginning of the query
and the beginning of the reference audio, even if a time
modification took place. It stands to reason that to is con-
stant for matching audio.

to = t1 − t′1 ×
(t3 − t1)

(t′3 − t′1)
(3)

The matching algorithm also provides information about
the query. The time offset tells at which point in time the
query starts in the reference audio. The time difference
ratio (t3− t1)/(t′3− t′1) represents how much time is mod-
ified, in percentages. How much the query is pitch-shifted
with respect to the reference audio can be deduced from
f ′1 − f1, in frequency bins. To convert a difference in fre-
quency bins to a percentage the following equation is used,
with n the number of cents per bin, e Eulers number, and
ln the natural logarithm: e((f

′
1−f1)×n×ln(2)/1200)

The matching algorithm ensures that random chance
hits are very uncommon, the number of false positives can
be effectively reduced to zero by setting a threshold on the
number of aligned matches. The matching algorithm also
provides the query time offset and the percentage of pitch-
shift and time-scale modification of the query with respect
to the reference audio.

3. RESULTS

To test the system, it was implemented in the Java pro-
gramming language. The implementation is called Panako
and is available under the GNU Affero General Public Li-
cense on http://panako.be. The DSP is also done in
Java using a DSP library [12]. To store and retrieve hashes,
Panako uses a key-value store. Kyoto Cabinet, BerkeyDB,
Redis, LevelDB, RocksDB, Voldemort, and MapDB were
considered. MapDB is an implementation of a storage
backed B-Tree with efficient concurrent operations [9] and
was chosen for its simplicity, performance and good Java
integration. Also, the storage overhead introduced when
storing fingerprints on disk is minimal. Panako is com-
pared with Audfprint by Dan Ellis, an implementation of a
fingerprinter system based on [13].

80 90 100 110 120
0

20

40

60

80

100

Pitch shift (Percentage)

Tr
ue

Po
si

tiv
es

(P
er

ce
nt

ag
e)

20s fragments
40s fragments
60s fragments
Audfprint (40s)

Figure 3: True positive rate after pitch-shifting. Note the fluctu-
ating effect caused by the Constant-Q frequency bins.

The test data set consists of freely available music down-
loaded from Jamendo 3 . A reference database of about
30,000 songs, about 106 seconds of audio, was created.
From this data set random fragments were selected, with a
length of 20, 40 and 60 seconds. Each fragments was mod-
ified 54 times. The modifications included: pitch-shifting
(−200 tot 200 cents in steps of 25 cents), time-stretching
(−16% to +16%, in steps of 2%), time-scale modification
(−16% to +16%, in steps of 2%), echo, flanger, chorus
and a band-pass filter 4 . Another set of fragments were
created from audio not present in the reference database,
in order to measure the number of correctly unidentified
fragments. In total 3 (durations) × 600 (excerpts) ×
54 (modifications) = 97, 200 fragments were created.

Each fragment is presented to both Panako and Audf-
print and the detection results are recorded. The systems
are regarded as binary classifiers of which the amount of
true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN) are counted. During the
experiment with Panako no false positives (FP) were de-
tected. Also, all fragments that are not present in the refer-
ence database were rejected correctly (TN). So Panako’s
specificity is TN/(TN + FP) = 100%. This can be ex-
plained by the design of the matching algorithm. A match
is identified as such if a number of hashes, each consist-
ing of three points in a spectrogram, align in time. A ran-
dom match between hashes is rare, the chances of a ran-
dom match between consecutively aligned hashes is almost
non-existent, resulting in 100% specificity.

The sensitivity FP/(TP + FN) of the system, how-
ever, depends on the type of modification on the fragment.
Figure 3 shows the results after pitch-shifting. It is clear
that the amount of pitch-shift affects the performance, but

3 http://jamendo.com is a website where artists share their work
freely, under various creative commons licenses. To download the data
set used in this paper, and repeat the experiment, please use the scripts
provided at http://panako.be.

4 The effects were applied using SoX, a command line audio editor.
The scripts used to generate the queries can be found at the website
http://panako.be

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

4

http://panako.be
http://jamendo.com
http://panako.be
http://panako.be

80 90 100 110 120
0

20

40

60

80

100

Time stretch factor (Percentage)

Tr
ue

Po
si

tiv
es

(P
er

ce
nt

ag
e)

20s fragments
40s fragments
60s fragments
Audfprint (40s)

Figure 4: The true positive rate after time-stretching.

80 90 100 110 120
0

20

40

60

80

100

Time-scale modification factor (Percentage)

Tr
ue

Po
si

tiv
es

(P
er

ce
nt

ag
e)

20s fragments
40s fragments
60s fragments
Audfprint (40s)

Figure 5: True positive rate after time-scale modification

in a fluctuating pattern. The effect can be explained by tak-
ing into account the Constant-Q bins. Here, a bin spans 33
cents, a shift of n × 33/2 cents spreads spectral informa-
tion over two bins, if n is an odd number. So performance
is expected to degrade severely at ±49.5 cents (3%) and
±148.5 cents (9%) an effect clearly visible in figure 3. The
figure also shows that performance is better if longer frag-
ments are presented to the system. The performance of
Audfprint, however, does not recover after pitch-shifts of
more than three percent.

Figure 4 shows the results after time stretching. Due to
the granularity of the time bins, and considering that the
step size stays the same for each query type, time modi-
fications have a negative effect on the performance. Still,
a more than a third of the queries is resolved correctly af-
ter a time stretching modification of 8%. Performance im-
proves with the length of a fragment. Surprisingly, Audf-
print is rather robust against time-stretching, thanks to the
way time is encoded into a fingerprint.

Figure 5 shows the results after time-scale modification.
The performance decreases severely above eight percent.
The figure shows that there is some improvement when
comparing the results of 20s fragments to 40s fragments,
but going from 40s to 60s does not change much. Audiof-
print is unable to cope with time-scale modification due to
the changes in both frequency and time.

0 20 40 60 80 100

Reference

Band-passed

Echo

Tremolo

Flanger

GSM

Chorus

True Positives (Percentage)

20s fragments 40s fragments
60s fragments Audfprint (40s)

Figure 6: Effect of several attacks on true positive rate.

In Figure 6, the results for other modifications like echo,
chorus, flanger, tremolo, and a band pass filter can be seen.
The parameters of each effect are chosen to represent typ-
ical use, but on the heavy side. For example the echo ef-
fect applied has a delay line of 0.5 seconds and a decay
of 30%. The system has the most problems with the cho-
rus effect. Chorus has a blurring effect on a spectrogram,
which makes it hard for the system to find matches. Still
it can be said that the algorithm is rather robust against
very present, clearly audible, commonly used audio ef-
fects. The result of the band pass filter with a center of
2000Hz is especially good. To test the systems robust-
ness to severe audio compression a test was executed with
GSM-compressed queries. The performance on 20s frag-
ments is about 30% but improves a lot with query length,
the 60s fragment yields 65%. The results for Audfprint
show that there is room for improvement for the perfor-
mance of Panako.

A practical fingerprinting system performs well, in terms
of speed, on commodity hardware. With Panako extracting
and storing fingerprints for 25s of audio is done in one sec-
ond using a single core of a dated processor 5 The test data
set was constructed in 30, 000×4×60s/25 = 80 processor
hours. Since four cores were used, it took less than a full
day. After the feature extraction, matching a 40s query
with the test database with 30, 000 songs is done within
75ms. The complete matching process for a 40s fragment
takes about one second. Monitoring multiple streams in
real-time poses no problem for the system. Building a fin-
gerprint dataset with Audfprint is faster since fingerprints
are extracted from an FFT which is less demanding than
a Constant-Q transform. The matching step performance,
however, is comparable.

5 The testing machine has an Intel Core2 Quad CPU Q9650 @
3.00GHz introduced in 2009. The processor has four cores.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

5

Failure analysis shows that the system does not per-
form well on music with spectrograms either with very lit-
tle energy or energy evenly spread across the range. Also
extremely repetitive music, with a spectrogram similar to
a series of dirac impulses, is problematic. Also, perfor-
mance drops when time modifications of more than 8% are
present. This could be partially alleviated by redesigning
the time parameters used in the fingerprint hash, but this
would reduce the discriminative power of the hash.

4. CONCLUSION

In this paper a practical acoustic fingerprinting system was
presented. The system allows fast and reliable identifi-
cation of small audio fragments in a large set of audio,
even when the fragment has been pitch-shifted and time-
stretched with respect to the reference audio. If a match
is found the system reports where in the reference audio
a query matches, and how much time/frequency has been
modified. To achieve this, the system uses local maxima in
a Constant-Q spectrogram. It combines event points into
groups of three, and uses time ratios to form a time-scale
invariant fingerprint component. To form pitch-shift in-
variant fingerprint components only frequency differences
are stored. For retrieval an exact hashing matching algo-
rithm is used.

The system has been evaluated using a freely available
data set of 30,000 songs and compared with a baseline
system. The results can be reproduced entirely using this
data set and the open source implementation of Panako.
The scripts to run the experiment are available as well.
The results show that the system’s performance decreases
with time-scale modification of more than eight percent.
The system is shown to cope with pitch-shifting, time-
stretching, severe compression, and other modifications as
echo, flanger and band pass.

To improve the system further the constant-Q transform
could be replaced by an efficient implementation of the
non stationary Gabor transform. This is expected to im-
prove the extraction of event points and fingerprints with-
out effecting performance. Panako could also benefit from
a more extensive evaluation and detailed comparison with
other techniques. An analysis of the minimum , most dis-
criminative, information needed for retrieval purposes could
be especially interesting.

5. REFERENCES

[1] Eric Allamanche. Content-based identification of audio
material using mpeg-7 low level description. In Pro-
ceedings of the 2nd International Symposium on Music
Information Retrieval (ISMIR 2001), 2001.

[2] Andreas Arzt, Sebastian Böck, and Gerhard Widmer.
Fast identification of piece and score position via sym-
bolic fingerprinting. In Fabien Gouyon, Perfecto Her-
rera, Luis Gustavo Martins, and Meinard Mller, edi-
tors, Proceedings of the 13th International Symposium
on Music Information Retrieval (ISMIR 2012), pages
433–438, 2012.

[3] Carlo Bellettini and Gianluca Mazzini. Reliable auto-
matic recognition for pitch-shifted audio. In Proceed-
ings of 17th International Conference on Computer
Communications and Networks (ICCCN 2008), pages
838–843. IEEE, 2008.

[4] Judith Brown and Miller S. Puckette. An Efficient Al-
gorithm for the Calculation of a Constant Q Trans-
form. Journal of the Acoustical Society of America,
92(5):2698–2701, November 1992.

[5] Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma.
A review of audio fingerprinting. The Journal of VLSI
Signal Processing, 41:271–284, 2005.

[6] Dan Ellis, Brian Whitman, and Alastair Porter.
Echoprint - an open music identification service. In
Proceedings of the 12th International Symposium on
Music Information Retrieval (ISMIR 2011), 2011.

[7] Sébastien Fenet, Gaël Richard, and Yves Grenier. A
Scalable Audio Fingerprint Method with Robustness
to Pitch-Shifting. In Proceedings of the 12th Interna-
tional Symposium on Music Information Retrieval (IS-
MIR 2011), pages 121–126, 2011.

[8] Jaap Haitsma and Ton Kalker. A highly robust audio
fingerprinting system. In Proceedings of the 3th Inter-
national Symposium on Music Information Retrieval
(ISMIR 2002), 2002.

[9] Philip L. Lehman and s. Bing Yao. Efficient locking for
concurrent operations on b-trees. ACM Transactions
Database Systems, 6(4):650–670, 1981.

[10] Mani Malekesmaeili and Rabab K. Ward. A local fin-
gerprinting approach for audio copy detection. Com-
puting Research Repository (CoRR), abs/1304.0793,
2013.

[11] M. Ramona and G. Peeters. AudioPrint: An efficient
audio fingerprint system based on a novel cost-less syn-
chronization scheme. In Proceedings of the 2013 IEEE
International Conference on Acoustics Speech and Sig-
nal Processing (ICASSP 2013), pages 818–822, 2013.

[12] Joren Six, Olmo Cornelis, and Marc Leman. Tarsos-
DSP, a Real-Time Audio Processing Framework in
Java. In Proceedings of the 53rd AES Conference (AES
53rd). The Audio Engineering Society, 2014.

[13] Avery L. Wang. An Industrial-Strength Audio Search
Algorithm. In Proceedings of the 4th International
Symposium on Music Information Retrieval (ISMIR
2003), pages 7–13, 2003.

[14] Bilei Zhu, Wei Li, Zhurong Wang, and Xiangyang
Xue. A novel audio fingerprinting method robust to
time scale modification and pitch shifting. In Proceed-
ings of the international conference on Multimedia
(MM 2010), pages 987–990. ACM, 2010.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

6

	1. Introduction
	2. Method
	2.1. Finding Local Maxima
	2.2. Handling Time Stretching: Event Triplets
	2.3. Handling Pitch-Shifts: Constant-Q Transform
	2.4. Handling Time-Scale Modification
	2.5. Fingerprint Hash
	2.6. Matching Algorithm

	3. Results
	4. Conclusion
	5. References

